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Supplementary reading

The imperative of interpretable machines
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Ta trust the behavior of complex Al algorithms,
especially In mission-critical settings,
they must be made intelligible.

EYDANIEL S WELD AND CACAN BANSAL

The Challenge
of Crafting
Intelligible
Intelligence
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Automated Decision Systems (ADS)

Automated Decision Systems (ADS)
process data about people
help make consequential decisions

combine human & automated decision making

aim to improve efficiency and promote equity

are subject to auditing and public disclosure




Terminology & vision

responsible Al

transparency, interpretability,

explainability, intelligibility agency, responsibility




Interpretability for different stakeholders

What are we explaining? /

To Whom are we explaining?

Why are we explaining?
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ADS in medical imaging

What are we explaining?
To Whom are we explaining?

Why are we explaining?

W hat is fastMRI is a collaborative research oroject
betweaen Facebook Al Rasearch (FAIR) and

fa St M R l? NYU Langone Health. The aim is to investigate
the use of Al to make MRI scans up to 10 times

fastler.

By producing accurats images from under-
sampled data, Al image reconstruction has the
potential to improve the patient’s experience

and to make MRIs accessible for more people.

https://tastmri.org/

FACEBOOK Al .&U"L:mm

fastMRI

Accelerating MR Imaging with Al

To enable the broader research cammunity to
participate in this important project, NYU
Langone Health has released fully anonymized
raw cata ard image datasets. Visit our github
reposilory, which contains baseline
reconstruction models and PyTorch data
loaders for the fastMRI dataset.




ADS in hiring

What are we explaining?

’\QQ«

¥ ey () g
J ¥y

TP
Sourcing To Whom are we explaining”

\ . J2> Why are we explaining?
ACCOUNTANT

Acme Partners

Qualifications:  BSin accounting, GFA 3.0, Know/2cge of financia' ard
accounting systems ard epplicaticns

R————

An Al program covld be used to ceview and analyze tha
appicant’s parsonal cata onling, includ ng Linkad i
profile, socigl media accourts and credit score,

Personaldata
to be analyzed:

Additional Al-assistec personality scoring
assessment:

ALERT: applicants for this position DO NOT have the option to
selectively decline use of Al analysis for any of their personal
data or to review and challenge the results of such analysis,

https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313 I' ad |


https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313

Nutritional labels for ADS?

Ranking Facts

Attribute Importance

PubCount 1.0 &
CSRankingAllArea 0.24 g
Faculty 0.12 g

Importance of an attribute in a ranking is quantified by the
correlation coefficient between attribute values and items
scores, computed by a linear regression model. Importance is
high if the absolute value of the correlation coefficient is over
0.75, medium if this value falls between 0.25 and 0.75, and low
otherwise.

(2]

DeptSizeBin = Regional Code =

DeptSizeBin FA*IR Pairwise Proportion
Large Fair @ Fair @ Fair @
Small Unfair @ Unfair @ Unfair @

A ranking is considered unfair when the p-value of the
corresponding statistical test falls below 0.05.

& Stability
Top-K Stability
Top-10 Stable
Overall Stable

comprehensible: short, simple, clear
consultative: provide actionable info
comparable: implying a standard

computable: incrementally constructed

[Yang, Stoyanovich, Asudeh, Howe, Jagadish, Miklau (2018)]

[Stoyanovich, Howe (2019)]




explaining black box
Models
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What are we explaining?

How does a system work? —
How well does a system work?
What does a system do?

Why was | __ (mis-diagnosed / not offered
a discount / denied credit) ?

Are a system'’s decisions discriminatory?

Are a system’s decisions illegal?




But isn’t accuracy sufficient?

How is accuracy measured? FPR/FNR/ ...

Accuracy for whom: over-all or in sub- /
populations?

Accuracy over which data”

There is never 100% accuracy. Mistakes for
HYPOTHESS | what reason?

EXPERIMENT




Explanations based on features

features in green (“sneeze”, “headache”) support the prediction (“Flu”),
while features in red (“no fatigue”) are evidence against the prediction

—

& M / - (LIME)
- W ;v:;%r:che = headache B
\ T no fatigue no fatigue
age 4 s
Model Data and Prediction Explanation Human makes decision

what if patient id appears in green in the list?

[Ribeiro, Singh & Guestrin, 2016]




LIME: Locally Interpretable Model-Agnostic Explanations

1. sample points around +
2. use original model to assign class labels

Key ideas —/_

Interpretable features
Interpretable models

locally faithful explanations

[Ribeiro, Singh & Guestrin, 2016]




LIME: Locally Interpretable Model-Agnhostic Explanations

1. sample points around +

2. use original model to assign class labels " Tt ;
3. weigh points according to distance from + + O
4. learn interpretable model according to samples —|—+ O
—- ® . +
‘ o ® +

Key ideas

Interpretable features

Interpretable models

locally faithful explanations

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Train a neural network to predict v. husky

Explanations for neural network prediction

Only 1 mistake!!!

Pri d cted: woll Predicted: husky Predicted: v

volt True: husky True: Wi
m ' ' f

A snow P acwtad: Predicted: husky Predicted: v
detector! rrrrrrr True: husky True: Wi

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Explaining Google’s Inception NN

probabilities of the top-3 classes
and the super-pixels predicting each

Electric guitar - incorrect but Acoustic guitar
reasonable, similar fretboard

[Ribeiro, Singh & Guestrin, 2016]
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Auditing black-box models

£
~

User data Credit

Classifier

2?7 >

Decisions

[Datta, Sen & Zick, 2016]

iImages by Anupam Datta

Credit

Classifier




Transparency report: Mr. X

How much influence do individual features have a  images by Anupam Datta
given classifier's decision about an individual?

0.5
Age 23

; 0.4 | """ """ """ """ """ """ """ Workclass Private
% o3 B o] Education 11th
g | | | | | | . | | | | | Marital Status Never married
) 0.2 - ------ ------ ----- ------ ------ Occupation Craft repair
$ ' ' ' ' ' ' Relationship to household income  Child
g O R AR R A A Race Asian-Pac
b A L R Island
8 0.0 |- B O O O R Gender Male
8 P DU R S NS SRS SOt OO SN N Capital gain $14344
— Capital loss $0
o —0.2 ...... ...... ...... ..... ----- ------ ------ - Work hours per week 40

| | | | | | | I I I ' l l Country Vietham

income

[Datta, Sen & Zick, 2016]




Transparency report:

Explanations for superficially similar images by Anupam Datta
iIndividuals can be different

0.4
: : : : : : : : : : : : Age 27

—_ 0.3 ----- ____ ---- ---- '''' """" """" Workclass Private
> : : ! ! : : : : : : : :
DL 02+ R Ry SR S R R B P L o Education Preschool
© : ; ! ; : : : : : : : : Marital Status Married
£ 0.1 - B REEEEE EEEER SRR SRR B R ACTETE FERE PR PR
Cé) 0.0 - R A AR AT Relationship to household income  Other Relative
o ey | Race White
e —0.1 : : : : : : : : : : :
- : : ! : : : | : : : ! : Gender Male
b S S e B Sl S S B i i | Capitalgain 41310
(- l l l l l . . : , , , X
(@) ! ! ! ! ! . . . , , . , Capital | $0
L e s S i SR R R apital loss
o 0.4 Work hours per week 24

' Country Mexico

income

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

iImages by Anupam Datta

For a quantity of influence Q and an input feature i, the Qll of fon Q
s the difference in Q when iis changed via an intervention.

Classifier —
(uses On|y DeC|S|On

income)

replace features with random values from the population, examine
the distribution over outcomes

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

iImages by Anupam Datta

For a quantity of influence Q and an input feature i, the Qll of fon Q
s the difference in Q when iis changed via an intervention.

Key ideas

Cnly accept old,
. . high-income
intervene on an input feature, individuals

measure its importance o - -
P . Classifier Decision

aggregate feature importance
using its Shapley value

[Datta, Sen & Zick, 2016]




SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with “additive feature
attribution methods”, including LIME and Qll, for local explanations

A Unified Approach to

Interpreting Model Predictions

Scott Lundberg, Su-In Lee

"“.‘;I*., S ;

NIPS 2017

[Lundberg & Lee, 2017] r al


https://www.youtube.com/watch?v=wjd1G5bu_TY

[ al



Explaining the data




The well-chosen average
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Explaining bias

Pre-existing is independent of an
algorithm and has origins in society

Technical is introduced or exacerbated
by the technical properties of an ADS

Emergent arises due to context of use

to fight bias, state
beliefs and
assumptions
explicitly

[Friedman & Nissenbaum (1996)]




Explaining the models




Explaining the decisions
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Interpretability for different stakeholders

What are we explaining? /

To Whom are we explaining?

Why are we explaining?




center

[/ e

taking control of technology

powered by NYU Center for Responsible Al

We are Al

dataresponsibly.github.io/we-are-ai


http://dataresponsibly.github.io/we-are-ai

Al comics for the general public

o lives, Who dies.
ho decides?

dataresponsibly.github.io/we-are-ai/comics [/ al


http://dataresponsibly.github.io/we-are-ai/comics

Scientific comics on Al
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http://dataresponsibly.github.io/comics
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Thank you!

Julia Stoyanovich

Computer Science and Engineering
Center for Data Science
Visualization & Data Analytics Center
Center for Responsible Al
New York University
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